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Abstract The direct influence of a d.c. electric field on weak tocalizalioo is investigated on 
the basis of a quantum diffusion madel for an anisotropic two-dimensional electron gas. The 
anisotropy is Waled both in a model of anisotropic effective masses and in a tight-binding 
model for parallel chains. The crossover of the delocalization edge from a pawer-law ID- 
like dependence to an exponential decrease. characteristic for a 2D s@em is investigated. 
The appearance of a delodization edge gives rise In a long-time powe~law current relaxation 
according to j ( t )  - 1 fd. independently of the anisotropy. 

1. Introduction 

The nature of the electronic states in a two-dimensional random potential has received a 
great deal of attention. It turns out that the localization length depends exponentially on 
the dimensionless disorder parameter kFho ( k F  is the Fermi momentum and ho the elastic 
scattering length). Any measurement of the resistance involves a finite electric field, which 
may give rise to a further increase of the localization length in the non-linear electric field 
regime. Therefore, it is interesting to study how the electric field affects the localization in 
two dimensions and whether there is a delocalization edge or not. Over the years this has 
been a quite controversial issue. On the one hand it is stated that a d.c. electric field does not 
break the time-reversal invariance and, therefore, as long as heating effects can be neglected, 
the electric field has no influence on weak localization [l,  2,3]. By contrast, Kirkpatrick [4] 
generalized the self-consistent theory of Anderson localization [S, 61 to include the effect 
of a uniform electric field and concluded that Anderson localization is not possible in a 
disordered two-dimensional system (d = 2) at finite electric fields. Similarly, Tsuzuki [7] 
and Kaveh et nl [SI predicted a direct influence of a d.c. electric field on the quantum 
interference, which is described by the so-called Cooperon. There are experimental results 
which seem to support both sides [9, IO]. 

The situation is quite different for the case of a one-dimensional disordered solid in 
a finite electric field. It is intuitively clear that, for a given degree of randomness, the 
spatial range of localized states is much greater in two dimensions than in one dimension. 
Concerning the electric field dependence Prigodin [ 111 obtained exact results by extending 
the Berezinskii diagrammatic technique. According to this approach power-law localization 
emerges for weak fields, while for higher fields a mobility edge appears, above which the 
states are extended. The experimental verification, e.g. on quantum wires, is complicated by 
Joule heating, which will invalidate the assumptions of the model unless the carrier density 
is very small and the electric field is not too large. 
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Within a self-consistent approach of quantum diffusion we [12] reproduced the exact 
result for the d = 1 delocalization field strength and predicted a delocalization edge for the 
two-dimensional case too, which, however, depends exponentially on the disorder parameter 
kpho. The appearance of this mobility edge leads to a long-time tail in the current relaxation, 
which was treated in [13]. Whereas very low carrier concentrations and extremely low 
lattice temperatures are necessary for measuring the predicted d = 2 effects, we found that 
the requirements for the one-dimensional case are far less restrictive. With respect to the 
direct influence of a constant electric field on weak localization, both the experimental and 
theoretical situation are so different for d = 1 and d = 2 systems that it should be useful to 
consider the intermediate case of an anisofropic two-dimensional electron gas. The aim of 
this paper is to provide a theoretical model for studying the constant-electric-field-mediated 
crossover behaviour of the delocalization edge and the related implications for the current 
relaxation. 

2. The delocalization edge 

According to the theory of Anderson localization proposed by Vollhardt and Wolfle [5, 61 
the dynamical diffusion coefficient D is derived from the self-consistent equation 

where DO = v>To/d is the bare diffusion coefficient in a d-dimensional lattice (VF  is the 
Fermi velocity, TO the elastic scattering time and NF the density of states at the Fermi 
surface). For an anisotropic two-dimensional electron gas two components D, and Dy 
of the diffusion coefficient appear. It has been shown in [14, 151 that, near the weak- 
coupling fixed point of the scaling theory of localization, the effects of anisotropy can be 
completely incorporated into only one diffusion coefficient. We adopt this treatment here 
and introduce the following anisotropy parameter U' = D,/D,.  The Cooper propagator 
C(k)  is the solution of the Laplace-transformed quantum diffusion equation, the form of 
which is equivalent to the continuity equation of the electrical current. As in 112, 131 we 
consider the restricted electric field region where it can be assumed that the Einstein relation 
between the renormalized mobilities and the diffusion coefficients Dx,y is still valid 

( N  = 2 N ~ € p / d  is the total electron concentration.) 
correlation function of the Cooperon has the following form 

The Laplace-transformed auto- 

where the electric field is aligned along the x-y plane E = E(cos@,sin@,O). In the 
thermal equilibrium the parameter s of the Laplace transformation can be identified by the 
complex frequency -io, which may also be replaced by l / ~ ~ ,  where T~ is the inelastic 
scattering time. The integral in (3) diverges at the upper boundary and one has to introduce 
appropriate cut-off wave vectors to get finite results. These boundaries are due to the fact 
that the diffusion picture is applicable only for large spatial regions. However, the main 
contribution in the integral (3) comes from small kx- and k,-values, so the upper cut-off 
wave vectors cX and K~ may be determined by physical reasoning. According to ow one- 
parameter approach with respect to the anisotropy we introduce two characteristic cut-off 
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parameters by j3' = K ~ / K ~  and iz = K ~ K ~ .  The integrals in (3) are elementary and one can 
easily express the autocorrelation function in terms of the renormalized diffusion coefficient 
D=Jrs;is; 

where 

and 

Because our approach is restricted to low electric fields ( y  << 1) we can further simplify 
(4) and obtain from (1) the following self-consistent equation: 

with the dimensionless parameter of the electric field 

The self-consistent equation (7) for the renormalied dynamical diffusion coefficient is our 
main result, whichdepends only on one effective cut-off parameter K = i/(&p+l/&). 
Furthermore, DO = is the bare effective diffusion coefficient of the anisotropic 
system, which is expressed in terms of an isotropic relaxation time TO and averaged velocities 
along the x and y directions, respectively 

~ ( k )  is the two-dimensional energy spectrum. It is in line with our oneparameter 
picture of the anisotropy that there is only one renormalized scattering time 5,  defined 
by DX, ,  = r(u:,J. The effects of anisotropic relaxation times were investigated in [16]. 

At the delocalization edge EO the dynamical diffusion coefficient vanishes (if s = 0) 
and one derives from (7) the simple expression 

1 
EO = - - cos2@ + LI sin2@ = - eEoNFLT----- ~ K N  smh 0 

with 

0 = 2 n 2 h N ~ D o .  (11) 

It is obvious that this result for the delocalization edge field strength exhibits a crossover 
behaviour from a power-law dependence 80 = 1/0 at Q << 1, which is characteristic for 
one-dimensional systems, to a steep exponential decrease EO = 2exp(-@) at 0 z 1, 
expected for two-dimensional electron gases [12]. This crossover gives rise to some 
peculiarities in the current relaxation, too. 
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3. Current relaxation 

Next we consider the time-dependent current, which results if initially at the time t = 0 
a constant elecmc field is switched on. According to the Einstein relation (2) the current 
components are obtained from the inverse Laplace-transformed diffusion coefficient 

P Kleinert and V V B ~ y k s i n  

eZE, 1 e 2 E y  
4 z Z h  a 4n2h j x ( t )  = - - f(t) j y W  = - CY f ( t )  

where the dimensionless current density f ( t )  is given by 
im 

1 ds 
f ( t )  = zni / se'' D(s)  f(s) = 4 z 2 h N ~ D ( s ) .  

-im 

It is expedient to introduce a new function p(f) = exp(r/r8) df/dt, which is used to derive 
an explicit integral representation for the dimensionless current f ( r )  via the following 
expression: 

W 

f ( t )  = f m  - j d~ exp(-xto/r,) v(x) (14) 

where a characteristic time ra = ~ J ~ ~ R N , C / K ~ & $  has been introduced. In (14) f w  = f (s = 0) 
is the dimensionless stationary current, which is obtained from the following transcendental 
equation: 

IIIO 

(15) 

with A = exp(7B). The desired explicit solution of the self-consistent equation for the 
dimensionless current f ( t )  is obtained by inverting the function p(s) and introducing the 
new integration variable z = exp(9): 

1 J1+ 8 2  + e: t o / ( f w r s )  - 1 
f m  =In [. 

J1+ 8 2  + 8: t o / ( f w r d  + 1 

The long-time behaviour of the current relaxation is obtained from this representation by 
applying the method of steepest descent: 

where we have introduced the following characteristic decay time: 

The coefficients B I  and BZ are calculated from 

E ,  = 4 z  sinh2E) Azo [2(Az -z$ + (2: + 4AZo + A*) lnzolr' (19) I (A - Z O ) ~  
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and 

where the saddle point position zo is the solution of the following transcendental equation: 

(21) 
At the delocalization field strength ( E / E O  = l), equation (21) has the solution = 1, which 
implies that BZ = 0. Therefore, if inelastic scattering is neglected (re + CO) one obtains 
from (17) a long-time power-law relaxation of the electric current according to j ( t )  - 1/&. 
This result is in accordance with the fact that one-parameter s cahg  still persists [14, 151 
and the critical exponents are independent of the anisotropy. The appearance of this long- 
time tail in the current relaxation is a characteristic feature of the metal-insulator phase 
transition, where near the critical point the relaxation processes rapidly slow down. If 
the electric field deviates only slightly from the edge field strength (IE - Eo1 << Eo) the 
asymptotic representation (17) can be simplified further and one obtains 

(A - Z O ) ~ ( E / E O ) ~  = 4Azo{A - zo + (A + ZO) Inz01. 

where a second characteristic relaxation time 

has been introduced. This result clearly demonstrates that the relaxation dynamics 
accelerates if the electric field deviates from the edge field strength or inelastic scattering 
processes are relevant. 

4. Discussion 

The anisotropy of the two-dimensional electron gas may be due to either an anisotropic 
effective mass or a tight-binding dispersion law along the y axis, which describes a system 
of parallel chains. In the former case, which was also treated by Kawabata [17], the energy 
spectrum has the form 

Adopting this model of anisotropy the parameter CY is given by CY' = m, /m,  = 1/p so the 
effective cut-off momentum takes the form K' = ~ / ( 4 ~ ~ r ~ ) ,  which implies according 
to (8) 

(25) 

Under the condition of weak localization ( & , ~ r ~ / h  >> 1) the delocalization field strength EO 
given by 

EF 
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depends exponentially on the disorder parameter &p%/f i .  The same exponential dependence 
results also for an isotropic two-dimensional electron gas 1131 (cf. also [18]). The only 
difference is that now the prefactor depends on the alignment of the electric field. 

The time dependence of the current is determined by (17), where for weakly localized 
electrons (0 >> 1) the parameters E1 and BZ are given by 

and the saddle point position is the solution of the equation (&/Eo)*  = zo(1 + Inzo). The 
time dependence of the current decay in such anisotropic systems agrees completely with 
ow former result on an isotropic 2D electron gas [13]. 

More interesting are two-dimensional systems, where the anisotropy is due to a grid 
of parallel quantum wires. In this case the motion of electrons from chain to chain in 
the perpendicular direction can be described by a tight-binding dispersion law with the 
mini-band width w 

P Kleinen and V V Bryksin 

(27) 2 E ,  = ( ~ r r z o ( ~  + Inzo))”’ ~2 = zoln zo 

where we assume that only one mini-band is occupied. The wires are separated by the 
distance a. If the mini-band width is much larger than the Fermi energy (w >> e ~ )  we 
recover the model discussed above with my = h’/wa2. More interesting is the case of 
narrow mini-bands (w K E F ) .  where the density of states at the Fermi level NF = @ ) / a  
is expressed by its 1D value N$) = I / x F I u F  and where the bare diffusion coefficients are 
given by Dox = r& , Doy = %w2a2/2212 and consequently 0 = &HWZ@. Accordingly, 
we obtain for the anisotropy parameter ct = wa/(Jzh~.=) .  The momentum cut-offs along 
the x and y directions are now quite different. Whereas the coherent transport along 
the x direction requires the cut-off l / K l  = ram = rouF, there are two values for 
the perpendicular motion, namely I / K ~  = % (uz) = rowa/J221 and 1 / ~ ~  = a/* ,  the 
minimum of which has to be chosen. The crossover between a steep exponential and a 
power-law dependence of the delocalization edge is governed by the parameter 0, which 
includes the mini-band width w and the elastic scattering time 70. For 0 < 1 we obtain 
from (8) and (10) the following position of the edge field strength 

$Y 

-- eEoAo - 4/ [(I + $) (cos. @ + (“@)’sin’ @) ”’ sinh 01 (29) 
E F  2n ho 

which is also a good approximation for 0 > 1. Numerical results, illustrating thii crossover 
for an electric field which is parallel or perpendicular to the chains, are shown in figure 
1 for n/(2nAo) = 0.1. On the one hand, if 0 > 1 the exponential dependence according 
to (26) is reproduced, where E F  has to be replaced by &w. On the other hand, if the 
mini-band width is smaller than the energy uncertainty due to scattering processes (0 << 1) 
then the motion of electrons b m  chain to chain along the y direction is in the regime of 
narrow-band transport. In this case the delocalization edge approaches the constant value 
eE,o = 4 & F / ( U F r o ) ,  which is the exact result of a one-dimensional chain [ l l ]  (cf also 
[12]) in a parallel electric field. In anisotropic samples with 0 < 1 the edge field strength 
strongly depends on the alignment of the electric field, as can be seen from figure 1. 

The time dependence of the current is obtained from (17), (19) and (20), where in the 
limit 0 -+ 0 the position of the saddle point zo = 1 - 20(po - 1) is calculated from 
 pi +& - 2 = 0, implying B I  = [2n(3 - p ~ ) / ( O p , $ ) ] ” ~  and Bz = 4@(p0 - l)’p;’, 
which completely agrees with the result of the one-dimensional case [13]. In the limit 
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Figure 1. Dimensionless edge field strength eEolo /E,= as a function of the anisotropy parameter 
0 for 0/(2nAo) = 0.1. The eleeuic field is aligned parallel and perpendicular to the chains. 
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Figure 2 Dimensionless stationary ctment fm as a function of the anisotropy parameter 
0 calculated from (15). From bonom to top, the scattering time ratio is: rofrc = 

IO-' and IO-'. 

w + 0 the characteristic decay time T remains finite and approaches the value T = 88. 
The dimensionless stationary current fm exhibits a sharp increase in the transition region 
between the 1D and 2D limits. Numerical results obtained from (15) are shown in figure 
2. Such an edgelike increase occurs only for sufficiently large inelastic scattering times 
ro/rE << 1. In the crossover region 0 - 1 the current-voltage characteristics become 
highly non-linear. 

5. Conclusion 

On the basis of a quantum diffusion model and using the Einstein relation for the mobility 
we calculated the direct influence of a static elechic field on the quantum interference 
effects and the related current relaxation for an anisotropic two-dimensional electron gas. 
The anisohopic system is characterized by three characteristic energies-cp and w ~ , ~ ,  where 
WX.Y is the mini-band width along the x and y axis, respectively. The ratio of these energy 
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parameters determines the behaviour of the system. Our approach predicts the existence of a 
delocalization edge, the field strength of which is proportional to I /  sinh(bWro/h), where b 
is some numerical constant and W = min ( E P ,  w,, ws), If the band widths are larger than the 
Fermi energy (wx, wy > E F )  the anisotropy can be described using the model of anisotropic 
effective masses, in which the anisotropy is weak and the delocalization edge is exponentially 
small EO - exp(-ns~ro/h), similarly to the case of weakly localized electrons in isotropic 
two-dimensional systems [12]. On the other hand, if one of the mini-bands is narrow, say 
w, > EF > ws, then the delocalization edge EO is proportional to l/sinh(&w,ro/h). If 
the mini-band width ws is smaller than h/ro, one observes a crossover from exponentially 
small edge field values, characteristic for 2D systems, to a much higher value, which 
approaches the constant 1D edge field strength. This crossover gives rise to highly non- 
linear current-voltage characteristics and has implications on the acceleration of current 
relaxation processes. Since the localization range i s  usually much larger in two dimensions 
than in one dimension, the effect of the delocalizing mechanisms is correspondingly greater. 
It is in line with the oneparameter scaling assumption that asymptotically and at r, + 03 

the current relaxation has the power-law dependence f ( t )  - I/& independently of the 
anisotropy. 

In contrast to those in an isotropic two-dimensional system, the electric field effects 
should be more easily measurable in smctured strongly anisotropic electron gases, because 
the edge field strength is much higher and the characteristic decay time T does not grow 
exponentially. Measurements which verify our predictions concerning the direct influence 
of a constant electric field on weak localization require low carrier densities and extremely 
low lattice temperatures. 
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